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1. Insurance Pricing Frameworks

1900s

1960s

1950s

1930s

1970s

1980s

1990s

2000s

Risk Theory

Bachelier

Cramer-Lundberg
Esscher
Levy, Kolmogorov,
Khintchine, Ito

Buhlmann
Borch

Artzner et al. coherent 
measure of risk

Wang transform

Levy processes, 
optimal dividends

Finance

Portfolio theory

CAPM
Systemic vs. diversifiable 
risk

Option pricing, no 
arbitrage, comparables

Phillips, Cummins, Allen
Myers-Read
Froot et al.

Zanjani

Actuarial

Bureau rates

Bureau rates

Bureau rates

…

Bureau rates

Bailey investment inc.
Ferrari, ROE

1978 ind. u/w profit

Cat Models

Idiosyncratic risk 
matters (Froot 2001)

2004 ind. u/w profit

Debt vs. equity
2010s



3

2. Insurance Risk is not Volumetrically Diversifying

 Expected Loss ($) = Volume ($ / t) x Time (t)

 A(x,t) := random variable representing aggregate losses from volume x insured for time t
– E[ A(x,t) ] = xt = expected loss

 Insurance risk is not volumetrically diversifying, meaning
– CV( A(x,t) ) does not tend to zero as x increases, for fixed t
– Recall coefficient of variation = CV = standard deviation / mean

 Practical meaning
– It is impossible to diversify away all insurance risk by growing larger 

 How to investigate?
– CV( A ) = CV( A / p ) =  CV( loss ratio ), p = fixed premium
– Look at volatility in loss ratio with volume
– Premium (and company) effects can be removed using an ANOVA; does not change conclusions

 Data source: NAIC Annual Statement, Schedule P
– Gross, ultimate loss ratios with 10 accident year history for most lines 
– Major lines: WC, Commercial Auto, HO, PPA, CMP, Other Liability etc. 
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 Volatility decreases to asymptote > 0
                  ⇒ not volumetrically diversifying

 Volatility not constant ⇒ not homogeneous

 Analogous to systemic risk in stock portfolio

2. Risk is not Volumetrically Diversifying

000
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3. Insurance Losses are not Homogeneous with Respect to Volume

 Homogeneous model: A(x,t) = xRt

– Rt a “return” random variable independent of volume x

– For assets x is position size and Rt is return or unit price

– Introduces a natural vector space structure for assets, with basis the return vectors Ri,t

 Homogeneity implies

– Shape of aggregate loss distribution independent of volume

– No volume based diversification

– A(x,t) has constant coefficient of variation (volatility) with x

 Homogeneous models are not appropriate for insurance

– Consider probability of zero losses: Pr(xX=0) = Pr(X=0) 

– Implies the probability of observing a zero loss is independent of volume x
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3. Insurance Losses are not Homogeneous with Respect to Volume

 Consider probability of zero claims in small and large books
 Compound Poisson aggregate losses, average severity 10 

– Small: claim count 4
– Large: claim count 32

 Left plot un-scaled; right plot scaled
 Homogeneous distributions would be indistinguishable in scaled plot

– Note decrease in variance on right hand plot
 Matlab code: ifft( exp( 4 * (fft( severity ) – 1) ) )
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3. Insurance Losses are not Homogeneous with Respect to Volume

 Geometric Brownian motion model is homogeneous wrt volume

– St = S0 exp( (μ- σ2/2) t + σBt),   where Bt is a Brownian motion

– Volume = S0

– Return = exp( (μ- σ2/2) t + σBt)

– It is not homogeneous wrt to time t
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4. Homogeneity is not “Locally” Appropriate

 Consider tX1 as a homogeneous approximation to a process Xt, agreeing at t=1

 Local approximation: one holding to first order in a neighborhood of a point
– First-order equality required by any theory considering derivatives or marginal impacts

• Myers-Read and gradient based methods of capital allocation 
– Equality at a point does not imply first order approximation

 Requires notion of derivative which requires a direction

Local 
approximation

Not a local 
approximation
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4. Homogeneity is not “Locally” Appropriate

 Recall the time/volume symmetry

– E[ A(x,t) ] = xt = expected loss

and to be consistent with stochastic process literature assume volume x=1 is fixed and let t proxy 
volume or time

 Model losses X(t) as a (mixed) compound Poisson distribution and suppose
– Expected claim count = t
– E(severity) = 1
– So E(X(t)) = E(severity) x E(claim count) =  t

 A homogeneous approximation to the family X(t) near t = 1 is given by t X(1)

 We will show this is not a local approximation

 Have two maps from [0,∞) → { risks }, agreeing at t = 1:

– m(t) = X(t), compound Poisson claim count t, (Glenn) Meyers embedding; not homogeneous 

– k(t) = t X(1), asset or Kalkbrener embedding; homogeneous by construction 
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4. Homogeneity is not “Locally” Appropriate

 Let ρ : { risks } → R be a real-valued risk measure
– Standard deviation, downside risk, higher moment, percentile (=Value-at-Risk, VaR), TVaR
– Tasche, Denault, Fischer, Myers-Read,… show we should be interested in  ∂ ρ / ∂ t, the rate of 

change of ρ with volume, in a given line of business or risk type 

 Two compositions ρ ° k, ρ ° m: [0,∞) → { risks } → R both give single valued functions of a single real 
variable t, and we can often easily compute derivatives 

 For ρ = standard deviation and severity ≡ 1 (so the compound Poisson is just Poisson) we have
– ρ ° m(t) = ρ(m(t)) = std dev( Poisson(t) ) = √ t,  but
– ρ ° k(t) = ρ(k(t)) = std dev( t Poisson(1) ) = t,  and so  ∂ (ρ ° k) / ∂ t = 1  ≠  ∂ (ρ ° m) / ∂ t = t-1/2/2

 Looking at the compositions masks the complexity of the embedding “paths” k and m in { risks }

 In terms of derivatives of ρ, “Dρat a “point”=random variable X(1)(in a direction = k’(1))”, example shows 

– DρX(1)(k’(1)) := ∂ (ρ ° k) / ∂ t ≠   ∂ (ρ ° m) / ∂ t =:  DρX(1)(m’(1))   

– DρX(1)(k’(1)) ≠  DρX(1)(m’(1)) implies directions m’(1) ≠ k’(1) are different 

 What are the directions m’(1) and k’(1)? What do these intermediate derivatives mean? 
– In the asset setting there are no mysteries for k: working in a vector space setting
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Serendipitous Moment…

Proprietary & Confidential
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Earth = { risks } = object 
with complex geometry

4. Homogeneity is not “Locally” Appropriate

∂ ρ ° k / ∂ t = DρRome(k’(1))
Dρ

TR ≅ R

Dρ:T{Sphere}Rome → TR
derivative linear mapping

∂ ρ ° m / ∂ t =DρRome(m’(1))

k, m
Two paths 
through Rome 
at t=1

m’(1)

k’(1)

T{Sphere}Rome  = tangent 
space to Sphere at 
Rome = derivatives 
of paths through 
Rome

R

t=1

t=0

R

ρ
k(1)=m(1)=Rome so
ρ(k(1))=ρ(m(1)); the
two paths meet at t=1
in Rome

Map or chart centered on Rome maps a 
flat plane to the curved sphere

≠
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4. Homogeneity is not “Locally” Appropriate

∂ ρ ° k / ∂ t = DρX(1)(k’(1))

ρ

Dρ

T{risks}x  = tangent space to 
{risks} at x

R

TR ≅ R

Dρ:T{risks}x → TR
linear mapping

m’(1)

k’(1)

∂ ρ ° m / ∂ t =DρX(1)(m’(1))

ρ(k(1))=ρ(m(1))
Two paths meet at t=1

≠
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4. Homogeneity is not “Locally” Appropriate

 Why is m drawn as the straight line or ray (half-line)?

 What is the addition operator “+” in { risks }?

– Assets: vector space structure with basis of return variables 
• 3X ok = own three stocks etc.

– Insurance: convolution of random variables 
• 3X not ok = over-insurance
• X1+ X2 + X3 ok using convolution sum of distributions 

Asset return model, 
vectors x represent return 
distributions
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4. Homogeneity is not “Locally” Appropriate

 Defining property for straight-line in { risks }: let Xt have distribution m(t) so Pr(Xt<x) = m((- ,x])
– m(s + t) = m(s)  m(t), convolution sum of random variables

 Levy process satisfies m(s + t) = m(s)  m(t) and so is appropriate notion of a straight line
– Additive, independent, homogeneous increments, stochastically continuous 

 Examples of Levy processes
– Brownian motion, compound Poisson, drift, combinations

 What are k’(1) and m’(1)? 
– mt defines a family of probability measures

– Properties manifest through operator action on functions  < f, mt > = ∫ f(x) dmt(x) = E(f(Xt))

– Derivative should be a family of linear functionals f → mt’(f)  indexed by t

– Fundamental Theorem of Calculus:  < f, m(1) > – < f, m(0) > = ∫0 mt’(f) dt

– Differentially: let A(f)(x) = lims→0+ [ E(f(x+Xs) – f(x)) ] / s, then the derivative operator f → mt’(f) 
satisfies mt’(f) = < Af, mt >

1
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4. Homogeneity is not “Locally” Appropriate

 A(f)(x) := lims→0+ [ E(f(x+Xs) – f(x)) ] / s   defines the infinitesimal generator A of the Markov process Xt

 For compound Poisson m, let J be distribution of jump sizes (severity) 

 For small t, Pr(jump) = λt + O(t2), so, conditioning on presence of a jump,

– A(f)(x) = lims0+ [ E(f(x+Xs)) – f(x)) ] / s =  [ λs E(f(x+J)) + (1 - λs) f(x) – f(x) ] / s = λ (E(f(x+J)) - f(x))

and hence

– mt’(f)  =  < Af, mt >  =  λ E[ f(Xt+J) – f(Xt) ],  note expectation over independent variables Xt and J 

 For k embedding k(t) = tX, A(f)(x) = E(X)f’(x) and so

– kt’(f) = < Af, mt > = E[ E(X) f’(tX) ] = E(X)E(f’(tX)), which is completely different

 If J=1 is constant, so  Xt = Poisson(λt) and k(t) = kX1

– mt’(f) = λ E[ f(Xt + 1)) – f(Xt) ]
– kt’(f) = E(X) E(f’(tX)) = λ E( f’(tX) )

 If Xt includes a Brownian motion then A becomes a second order differential operator using Ito calculus

 Finally, λ E[ f(Xt+J) – f(Xt) ] is a plausible risk measure for different functions f
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5. Empirical Evidence

 We have seen the data supports two hypotheses 
– Risk is not homogeneous: i.e. CV 

not constant wrt volume
– Risk is not volumetrically diversifying: 

CV has asymptote > 0

 Can we say more?

 Levy process based models, let X(.) be a Levy process

– A(x,t) = X( xt ) volumetric/temporal symmetry 
– A(x,t) = X( xZ(t) ) Z a positive, increasing Levy process (a subordinator), e.g. seasons
– A(x,t) = X( xCt ) E(C)=1, C is called a mixing variable (Heckman-Meyers)
– A(x,t) = X( xCZ(t) )

 The mixing variable appears unobservable, but can actually  be derived from empirical data

 Tame severity distributions are irrelevant 

0.10

1.00

1M 10M 100M 1,000M 10,000M
Volume

CV
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Mixing Variables & the Distribution of Normalized Loss Ratios

 Mixed compound Poisson: A = X1+…+XN, N|C ~ Poisson(nC), E(C)=1
 Normalized Loss Ratio NLR = A / E(A)
 Dichotomous behavior of normalized loss ratios

If C is constant, NLR converges to 1.0 in 
distribution

Illustration shows aggregates with Poisson 
frequency and larger & larger values of E(A)

If C is not constant, NLR converges to C in 
distribution

Illustration shows aggregates with negative 
binomial frequency (gamma mixing) & larger & 
larger values of E(A)

No parameter uncertainty: leads to 
unrealistic aggregate loss distribution as 

expected losses increase

Including parameter preserves actual 
variability observed in data for large 

insurers
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Key Technical Result

 If severity X has a variance then A / E(A) converges in distribution to C as expected claim count tends 
to infinity 

 Proof:
Let MD be the moment generating function MD(t) = E(exp(tD)) of D, for D=A, C, N or X. Let 
x=E(X), n=E(N), a=E(A)=nx. Then 

For some remainder function R(t)=O(t2). The assumptions on X guarantee that MX’(0)=x=E(X) & 
that the reminder term in Taylor’s expansion is O(t2). The result follows because a distribution is 
uniquely determined by its moment generating function. 

 Result has important implications for parameterizing economic capital simulation models and for 
understanding correlation between different lines of business 
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5. Empirical Evidence: Systemic Insurance Risk by Line
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5. Empirical Evidence: Volumetric/Temporal Symmetry

 Consider volatility of A(x,t), A(2x,t/2), A(4x,t/4) etc.

 Same relationship between volatility and volume, xt

 Data consistent with volumetric/temporal symmetry and with model A(x,t) = X( xCt )
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6. Four Levy Process Models

 A(x,t) = X( xt ) no Volumetrically diversifying

 A(x,t) = X( xZ(t) ) no Volumetric/temporal asymmetry

 A(x,t) = X( xCt ) Yes Not volumetrically diversifying, volumetric/temporal symmetry 

 A(x,t) = X( xCZ(t) ) no Volumetric/temporal asymmetry

 A(x,t) = xR(t) no Constant volatility with volume

» Variance and coefficient of variation
v of each model 
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7. Why bother with Levy Processes?

 Paper uses compound Poisson distributions as examples for simplicity

 Why bother with general Levy processes?
– Academically interesting / publishing cottage industry!

 “Infinite activity” Levy processes include processes with X(1) distributed as
– Lognormal
– Pareto
– Gamma
– Laplace
– Weibull (α<1; α>1 is not infinitely divisible)
– Allows for negative jumps but positive creep

 Use of infinitesimal generator as a risk measure through norm of operator appears interesting 
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8. So What? Can we see the Impact in Prices?

 Idiosyncratic risk matters, price should decrease with size
– Price = margin or spread over actuarial rate
– Size = expected loss = xt; t=1
– “Large” depends on particulars of severity distribution

 Umbrella and high limit policies
– Companies target higher price and lower combined ratio for higher process risk

 Reinsurer notion of “balance”
– Unbalanced cover has premium < limit

 Property per risk reinsurance
– Large limits; unbalanced
– Historically very expensive 

 Large accounts, package policies
– Probably top-line focus rather than risk theory

 Myers-Cohn
– Impact of inhomogeneity apparent around volume typical of company business unit or allocation 

unit 
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9. Observed Correlations and Copulas

Numbers in gray not statistically significantly different from zero at 90% level 

 
First Year 1992 Evaluation latest Premium Threshold ($M) 100.0
Last Year 2007 Gross or Net G Averages straight

Correlation Coefficients
Raw Line B
Line A All Home PPAuto CMP CommAuto WorkComp OtherLiabOcc MedMalCM OtherLiabCM ProdLiab-Occ
All 1.000 0.635 0.553 0.774 0.670 0.758 0.736 0.704 0.570 0.618
Home 0.635 1.000 0.069 0.198 0.079 -0.086 -0.021 -0.091 -0.043 0.102
PPAuto 0.553 0.069 1.000 0.250 0.281 0.305 0.295 0.314 0.366 0.270
CMP 0.774 0.198 0.250 1.000 0.528 0.432 0.503 0.595 0.423 0.427
CommAuto 0.670 0.079 0.281 0.528 1.000 0.627 0.685 0.725 0.451 0.752
WorkComp 0.758 -0.086 0.305 0.432 0.627 1.000 0.638 0.759 0.572 0.605
OtherLiabOcc 0.736 -0.021 0.295 0.503 0.685 0.638 1.000 0.802 0.606 0.641
MedMalCM 0.704 -0.091 0.314 0.595 0.725 0.759 0.802 1.000 0.731 0.797
OtherLiabCM 0.570 -0.043 0.366 0.423 0.451 0.572 0.606 0.731 1.000 0.229
ProdLiab-Occ 0.618 0.102 0.270 0.427 0.752 0.605 0.641 0.797 0.229 1.000
No Market Risk Line B
Line A All Home PPAuto CMP CommAuto WorkComp OtherLiabOcc MedMalCM OtherLiabCM ProdLiab-Occ
All 1.000 0.645 0.462 0.649 0.420 0.547 0.545 0.567 0.288 0.368
Home 0.645 1.000 0.071 0.083 0.080 -0.098 0.002 -0.167 0.068 0.123
PPAuto 0.462 0.071 1.000 0.082 0.047 0.143 0.107 0.155 0.107 0.372
CMP 0.649 0.083 0.082 1.000 0.321 0.281 0.285 0.046 0.158 0.222
CommAuto 0.420 0.080 0.047 0.321 1.000 0.394 0.440 0.273 0.128 0.371
WorkComp 0.547 -0.098 0.143 0.281 0.394 1.000 0.226 0.316 0.005 0.386
OtherLiabOcc 0.545 0.002 0.107 0.285 0.440 0.226 1.000 0.377 0.251 0.371
MedMalCM 0.567 -0.167 0.155 0.046 0.273 0.316 0.377 1.000 0.426 0.206
OtherLiabCM 0.288 0.068 0.107 0.158 0.128 0.005 0.251 0.426 1.000 0.099
ProdLiab-Occ 0.368 0.123 0.372 0.222 0.371 0.386 0.371 0.206 0.099 1.000

US Statutory Loss Ratio Correlations
$100M Premium Threshold in Both Lines
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9. Observed Correlations and Copulas
First Year 1992 Evaluation latest Premium Threshold ($M) 100.0
Last Year 2007 Gross or Net G Averages straight

90.0% Confidence Interval for Correlation Coefficients
Raw Line B
Line A All Home PPAuto CMP CommAuto WorkComp OtherLiabOcc MedMalCM OtherLiabCM ProdLiab-Occ
All 1 (0.60, 0.67) (0.52, 0.58) (0.75, 0.80) (0.63, 0.70) (0.73, 0.78) (0.71, 0.76) (0.65, 0.75) (0.50, 0.63) (0.51, 0.71)
Home (0.60, 0.67) 1 (0.01, 0.13) (0.12, 0.27) (-0.01, 0.16) (-0.17, 0.00) (-0.11, 0.07) (-0.32, 0.14) (-0.18, 0.09) (-0.09, 0.29)
PPAuto (0.52, 0.58) (0.01, 0.13) 1 (0.18, 0.32) (0.21, 0.35) (0.23, 0.37) (0.22, 0.37) (0.11, 0.50) (0.25, 0.47) (0.09, 0.44)
CMP (0.75, 0.80) (0.12, 0.27) (0.18, 0.32) 1 (0.47, 0.58) (0.37, 0.49) (0.44, 0.56) (0.46, 0.71) (0.33, 0.51) (0.28, 0.56)
CommAuto (0.63, 0.70) (-0.01, 0.16) (0.21, 0.35) (0.47, 0.58) 1 (0.58, 0.67) (0.64, 0.72) (0.62, 0.81) (0.36, 0.54) (0.67, 0.82)
WorkComp (0.73, 0.78) (-0.17, 0.00) (0.23, 0.37) (0.37, 0.49) (0.58, 0.67) 1 (0.59, 0.68) (0.67, 0.83) (0.49, 0.64) (0.49, 0.70)
OtherLiabOcc (0.71, 0.76) (-0.11, 0.07) (0.22, 0.37) (0.44, 0.56) (0.64, 0.72) (0.59, 0.68) 1 (0.73, 0.86) (0.54, 0.67) (0.53, 0.73)
MedMalCM (0.65, 0.75) (-0.32, 0.14) (0.11, 0.50) (0.46, 0.71) (0.62, 0.81) (0.67, 0.83) (0.73, 0.86) 1 (0.64, 0.81) (0.68, 0.88)
OtherLiabCM (0.50, 0.63) (-0.18, 0.09) (0.25, 0.47) (0.33, 0.51) (0.36, 0.54) (0.49, 0.64) (0.54, 0.67) (0.64, 0.81) 1 (0.05, 0.39)
ProdLiab-Occ (0.51, 0.71) (-0.09, 0.29) (0.09, 0.44) (0.28, 0.56) (0.67, 0.82) (0.49, 0.70) (0.53, 0.73) (0.68, 0.88) (0.05, 0.39) 1
No Market Risk Line B
Line A All Home PPAuto CMP CommAuto WorkComp OtherLiabOcc MedMalCM OtherLiabCM ProdLiab-Occ
All 1 (0.61, 0.68) (0.42, 0.50) (0.61, 0.68) (0.37, 0.47) (0.51, 0.58) (0.50, 0.59) (0.49, 0.63) (0.20, 0.37) (0.22, 0.50)
Home (0.61, 0.68) 1 (0.01, 0.13) (0.00, 0.16) (0.00, 0.16) (-0.18, -0.01) (-0.09, 0.10) (-0.38, 0.06) (-0.07, 0.20) (-0.07, 0.31)
PPAuto (0.42, 0.50) (0.01, 0.13) 1 (0.01, 0.16) (-0.03, 0.12) (0.07, 0.22) (0.02, 0.19) (-0.06, 0.36) (-0.02, 0.23) (0.20, 0.53)
CMP (0.61, 0.68) (0.00, 0.16) (0.01, 0.16) 1 (0.25, 0.39) (0.21, 0.35) (0.21, 0.36) (-0.14, 0.23) (0.05, 0.26) (0.06, 0.38)
CommAuto (0.37, 0.47) (0.00, 0.16) (-0.03, 0.12) (0.25, 0.39) 1 (0.33, 0.45) (0.38, 0.50) (0.09, 0.44) (0.01, 0.24) (0.22, 0.51)
WorkComp (0.51, 0.58) (-0.18, -0.01) (0.07, 0.22) (0.21, 0.35) (0.33, 0.45) 1 (0.15, 0.30) (0.14, 0.48) (-0.11, 0.12) (0.24, 0.52)
OtherLiabOcc (0.50, 0.59) (-0.09, 0.10) (0.02, 0.19) (0.21, 0.36) (0.38, 0.50) (0.15, 0.30) 1 (0.22, 0.52) (0.15, 0.35) (0.22, 0.51)
MedMalCM (0.49, 0.63) (-0.38, 0.06) (-0.06, 0.36) (-0.14, 0.23) (0.09, 0.44) (0.14, 0.48) (0.22, 0.52) 1 (0.27, 0.56) (-0.06, 0.44)
OtherLiabCM (0.20, 0.37) (-0.07, 0.20) (-0.02, 0.23) (0.05, 0.26) (0.01, 0.24) (-0.11, 0.12) (0.15, 0.35) (0.27, 0.56) 1 (-0.08, 0.27)
ProdLiab-Occ (0.22, 0.50) (-0.07, 0.31) (0.20, 0.53) (0.06, 0.38) (0.22, 0.51) (0.24, 0.52) (0.22, 0.51) (-0.06, 0.44) (-0.08, 0.27) 1

Number of Observations
Line A All Home PPAuto CMP CommAuto WorkComp OtherLiabOcc MedMalCM OtherLiabCM ProdLiab-Occ
All 4400 852 1260 702 671 1022 653 248 296 99
Home 852 852 722 423 388 378 308 52 144 73
PPAuto 1260 722 1260 453 483 455 376 61 167 77
CMP 702 423 453 702 488 516 435 79 222 97
CommAuto 671 388 483 488 671 543 464 77 204 98
WorkComp 1022 378 455 516 543 1022 477 80 221 99
OtherLiabOcc 653 308 376 435 464 477 653 88 249 98
MedMalCM 248 52 61 79 77 80 88 248 87 41
OtherLiabCM 296 144 167 222 204 221 249 87 296 87
ProdLiab-Occ 99 73 77 97 98 99 98 41 87 99
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9. Observed Correlations and Copulas

Commercial Multi-Peril (x-axis) vs. Commercial Auto Liability, $100M premium threshold 552 Annual Observations

Association Summary Univariate Summary
Linear Correlation, rho 52.1% Commercial Multi-Peril Commercial Auto Liabilit
90% Confidence Interval (46.8%, 57.1%) Mean 0.7448 0.7865
Base Linear Correlation 71.1% Min 0.1961 0.3119
Extreme Linear Correlation (n=57) 30.9% Max 2.3773 2.0247
Rank Correlation 67.6% Std. Dev. 0.2409 0.2050
Rank Correlation from rho 50.3% CV 32.3% 26.1%
Normal-Transformed Correlation 65.1% Skewness 1.99 1.36
Kendall Tau 50.0% Kurtosis 9.88 3.91
Rho from tau 70.7% 90th percentile 98.7% 105.1%
Outliers at 10% and 1% levels 10.3% and 1.8% 99th percentile 142.8% 151.9%
Note: 1% outliers from normal copula marked in red. 10% and 1% and confidence intervals show  on right.
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10. How the Results are Used
Aon Benfield Insurance Risk Study Informed Parameterization of Risk Models

Objective
 Insurance Risk Study determines credible 

global insurance volatility benchmarks for 
use in underwriting risk modeling

 Motivation: robust empirical quantification of all 
aspects of underwriting risk 

 Systemic volatility parameters by country, 
by line
– Forty eight countries, 90% of global premium
– Results for eight core lines of business
– Available as input to any simulation tool

 Loss ratio correlation between lines within country 
and between countries

 Assessment of US reserve risk 
 Correlation between macroeconomic and 

insurance variables 
 Economic and insured loss potential from major 

catastrophe risks globally
 Recognized by major US rating agencies
 Published annually in August
 Seventh edition released in 2012
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Contact Information

Stephen J. Mildenhall, PhD, FCAS, ASA, CERA

Aon Benfield Analytics
Chicago, IL

+1.312.381.5880 (office) / +1.312.961.8781 (cell)
stephen.mildenhall@aonbenfield.com

mailto:paul.eaton@aonbenfield.com
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