
Actuarial Geometry: Volumetric and Temporal Diversification of Insurance Risk

Stephen J. Mildenhall University of Wisconsin, Madison

February 1st, 2013

Outline

- 1. Insurance pricing frameworks
- 2. Insurance risk is not volumetrically diversifying
- 3. Insurance losses are not homogeneous with respect to volume
- 4. Homogeneous model is not even "locally" appropriate
- 5. Empirical data and supporting evidence
- 6. Four models based on Levy processes
- 7. Why bother with general Levy processes vs. compound Poisson processes?
- 8. So what? Can we see impact in prices?
- 9. Observed correlations and copulas
- 10. How the results are used

1

1. Insurance Pricing Frameworks

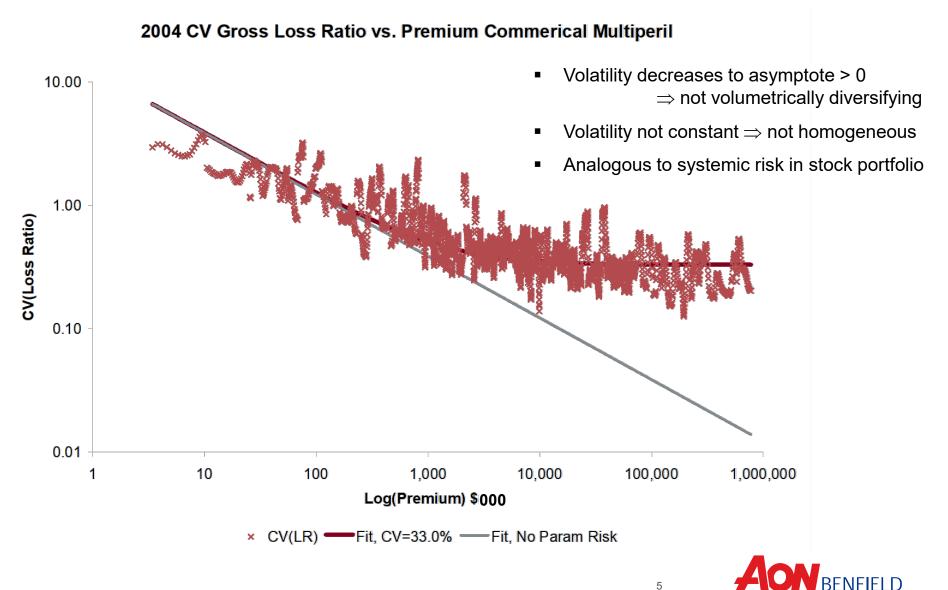
	Risk Theory	Finance	Actuarial
1900s	Bachelier		Bureau rates
1930s	Cramer-Lundberg Esscher		Bureau rates
	Levy, Kolmogorov, Khintchine, Ito		Bureau rates
1950s	Khintenine, ito		
		Portfolio theory	Bureau rates
1960s		CAPM	Bailey investment inc.
1070-	Buhlmann	Systemic vs. diversifiable	Ferrari, ROE
1970s	Borch	risk	1978 ind. u/w profit
1980s		Option pricing, no arbitrage, comparables	
			Cat Models
1990s	Artzner et al. coherent measure of risk		
0000	measure of fisk	Phillips, Cummins, Allen	Idiosyncratic risk
2000s	Wang transform	Myers-Read	matters (Froot 2001)
2010s	Levy processes,	Froot et al.	2004 ind. u/w profit
	optimal dividends	Zanjani	Debt vs. equity

2. Insurance Risk is not Volumetrically Diversifying

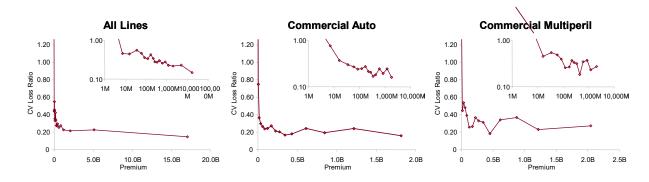
- Expected Loss (\$) = Volume (\$ / t) x Time (t)
- A(x,t) := random variable representing aggregate losses from volume x insured for time t
 E[A(x,t)] = xt = expected loss
- Insurance risk is not volumetrically diversifying, meaning
 - CV(A(x,t)) does not tend to zero as x increases, for fixed t
 - Recall coefficient of variation = CV = standard deviation / mean
- Practical meaning
 - It is impossible to diversify away all insurance risk by growing larger
- How to investigate?
 - CV(A) = CV(A / p) = CV(loss ratio), p = fixed premium
 - Look at volatility in loss ratio with volume
 - Premium (and company) effects can be removed using an ANOVA; does not change conclusions
- Data source: NAIC Annual Statement, Schedule P
 - Gross, ultimate loss ratios with 10 accident year history for most lines
 - Major lines: WC, Commercial Auto, HO, PPA, CMP, Other Liability etc.

SCHEDULE P - PART 1D - WORKERS' COMPENSATION

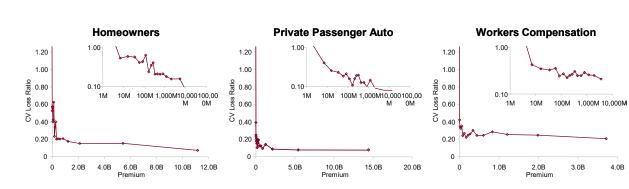
				1	(\$00	0 omitted)						
		Premiums Earne					Loss Expense					12
Years in W		2	3				and Cost		and Other	1D	11	Number
Premiun	15			Loss Pa	ayments		t Payments		nents			of
Were				4	5	⁸	1	8	9	Salvage	Total	Claims
Earned a			Net	Direct		Direct		Direct		and	Net Paid	Reported-
Losses W		Ceded	(Cols. 1 - 2)	and	Ceded	and		and	Ceded	Subrogation		Direct and
Incurres	Assumed	Geded	(CDIS. 1 - 2)	Assumed	Leaea	Assumed	Ceded	Assumed	Ceded	Received	. 8 - 7 + 8 - 9)	Assumed .
1. Prior.		XXX	XXX	156,422	7,531		72	3,530	(UT),			XXX
2. 1996.	1,746,768	9,914	1,736,854	859,568			1,234	93,376	8	51,572	1,005.879	348,154
3. 1997.	1,342,521	(151,161)	1,493,682	.1,012,510			1,705	73,653	0	60,094	1,156,327	384,917
4. 1998.	1,704,209		1,676,166	1,503,449	(17,438)	110,787	2,411		5		1,523.614	423,447
5. 1999.	1,723,216		1,453,113	1,409,971	413,039	115,987	12,402	81,396	9		1,181,904	
6. 2000.	1,390,797		1 196,514	.1.104,815	412,884	103,020		45,466	4			357,680
7. 2001.	1,037,840			888,300	411,142						60 9,196	292,642
8. 2002.	1,464,414		1,283,809	583,945			2,123	83,137	0	27,115		
9. 2003.	1,517,227		1,090,991	436,436			1,652		0	12,505		
10. 2004.	1,504,575		1,296,178	274,586		24,354	1,159		0	4,999		131,659
11. 2005.	1,173,428								(115)			
12. Total	s XXX	XXX	XXX	.8,119,978	1,380,507	697,490		668,328	(75)	415,666	8.053.965	XXX

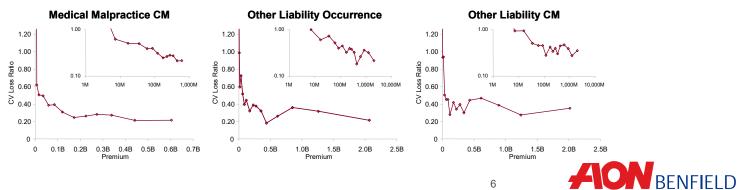

			Losses	Unpaid		Defer	ise and Cost (Containment L	Inpaid	Adjusting Unj	and Other baid	. 23	24 Total	25
		Case	Basis	Bulk +	BNR	Case	Basis	Bulk +	BNR	21	22	-	Net	Number of
		13	14	15	16	17	18	19	20	1		Salvage	Losses	Claims
		Direct		Direct		Direct		Direct		Direct		and	and	Outstanding-
		and		and		and		and		and		Subrogation	Expenses	Direct and
		Assumed	Ceded	Assumed	Ceded	Assumed	Ceded	Assumed	Ceded	Assumed	Ceded	Anticipated	Unpaid	Assumed
1.	Prior	1,466.509	101,202	386,407		0	0	61.370			(411)		1,689,170	
2.	1996	107.654	1,197		(100)	0	0	11.487		4,376	0			
3.	1997	157.495		24,545	2.825	0	0			4,728	0	1,225		1,204
4.	1998	230.749				0	0		118	6,869	(141)	2,057		1,939
5.	1999					0	0	7.161	144	6,207	0	3,303		
6.	2000	275.517				0	0			6,721	0	1,229		3,172
7.	2001			124,500		0	0			6,548	0		(68,575)	3,067
8.	2002	188.949		130,920		0	0				0	16,653		2,494
9.	2003			171,086		0	0				0	16,486		
10.	2004	181.275	24,505	320,179	71.518	0	0		3,162	11,366	0	20,379		4,783
11.	2005	147,550		402,348		0	0			71,660	0			
12	Totals	3,524.184		1,710,236		0	0				(552)	125,977	4,461,985	

		Total Losses and s Expenses Incu		Loss and Loss Expense Percentage (Incurred/Premiums Earned)				34 Nontabular Discount inter-			Not Balance Sheet Reserves after Discount		
	26	27	28	29	30	31	32	33	Company	35	36		
	Direct and			Direct					Popling	1	Loss		
	Assumed	Ceded	Net	Assumed	Ceded	Net	oss	Loss Expense	Participation Percentage	Losses Un paid	Expenses Unpaid		
1. Prior.							0						
2. 1996.	1 156 449		1, 141,974		146.D			0	0.00	120.252			
3. 1997.	1,377,550		1,359.640		(11.8)		0	0	0.00				
4. 1998.		(11,003)	1.818,400		(39.2)			0	0.00				
5. 1999.	1 954 276		1,436,259	113.4			0	0	0.00				
6. 2000.	1,616,709	555,325	1,061,383		285.B		D	0	0.00				
7. 2001.	1 474 820						0	0	0.00	(95,080)			
8. 2002.	1,088,925		1,002,195			78.1	D	0	0.00				
9. 2003.							0	0	0.00				
10. 2004.		133, 165					D	0	0.00				
11. 2005.							0	0	0.00				
12. Totals				XXX		xxx	D	0	XXX	3,954.090			


			-		
				Premiums Earne	
	Year	s in Which	1	2	3
	Pr	emiums			
		Were			
	Ea	rned and	Direct		
_	Los	ses Were	and		Net
7		ncurred	Assumed	Ceded	(Cols. 1 - 2)
	1.	Prior	XXX	XXX	XXX
	2.	1996	1,746,768	9,914	1,736,854
	3.	1997	1,342,521	(151,161)	1,493,682
	4.	1998	1,704,209		1,676,166
	5.	1999	1,723,216	270,103	1,453,113
	6.	2000	1,390,797	194,283	1,196,514
	7.	2001	1,037,840	583,732	454,108
	8.	2002	1,464,414		1,283,809
	9.	2003	1,517,227	426,236	1,090,991
	10.	2004	1,504,575	208,397	1,296,178
	11.	2005	1,173,428	205,268	968,160
	12.	Totals	XXX	XXX	XXX

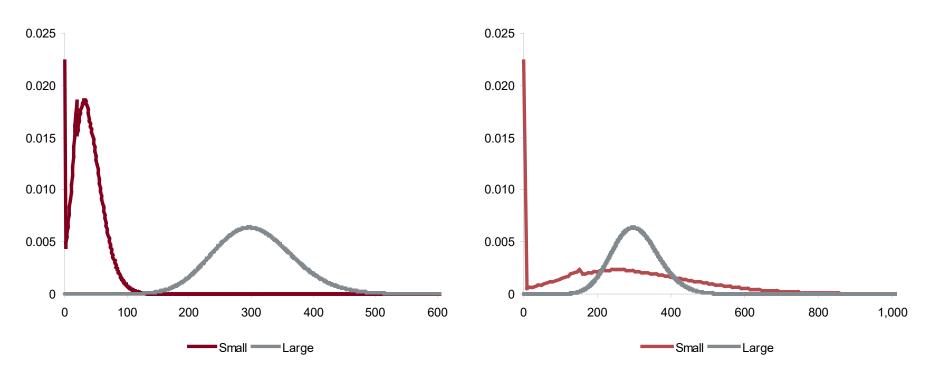
-		Loss Expense Po red/Premiums Ea	•
7	29 Direct and	30	31
_	Assumed	Ceded	Net
	XXX	XXX	XXX
	66.2	146.0	65.7
	102.6	(11.8)	91.0
	106.1	(39.2)	108.5
	113.4	191.8	
	116.2		
	142.1	160.0	119.1
	74.4	48.0	78.1
	61.9	21.3	77.8
		63.9	
_	67.9	48.8	71.9
4	XXX	XXX	XXX


2. Risk is not Volumetrically Diversifying


5

- Asymptote is a risk characteristic for each line
- It varies substantially across lines
- It is reasonably constant over time

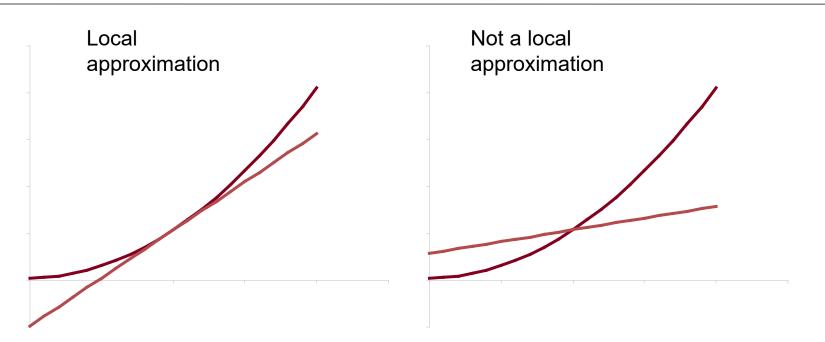
Homeowners



3. Insurance Losses are not Homogeneous with Respect to Volume

- Homogeneous model: A(x,t) = xR_t
 - R_t a "return" random variable independent of volume x
 - For assets x is position size and R_t is return or unit price
 - Introduces a natural vector space structure for assets, with basis the return vectors R_{i,t}
- Homogeneity implies
 - Shape of aggregate loss distribution independent of volume
 - No volume based diversification
 - A(x,t) has constant coefficient of variation (volatility) with x
- Homogeneous models are not appropriate for insurance
 - Consider probability of zero losses: Pr(xX=0) = Pr(X=0)
 - Implies the probability of observing a zero loss is **independent of volume x**

3. Insurance Losses are not Homogeneous with Respect to Volume


- Consider probability of zero claims in small and large books
- Compound Poisson aggregate losses, average severity 10
 - Small: claim count 4
 - Large: claim count 32
- Left plot un-scaled; right plot scaled
- Homogeneous distributions would be indistinguishable in scaled plot
 - Note decrease in variance on right hand plot
- Matlab code: ifft(exp(4 * (fft(severity) 1)))

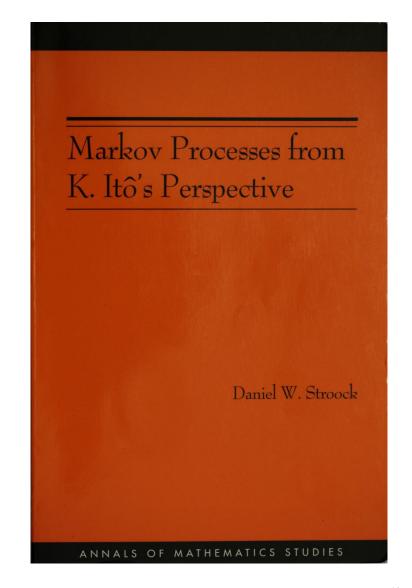
3. Insurance Losses are not Homogeneous with Respect to Volume

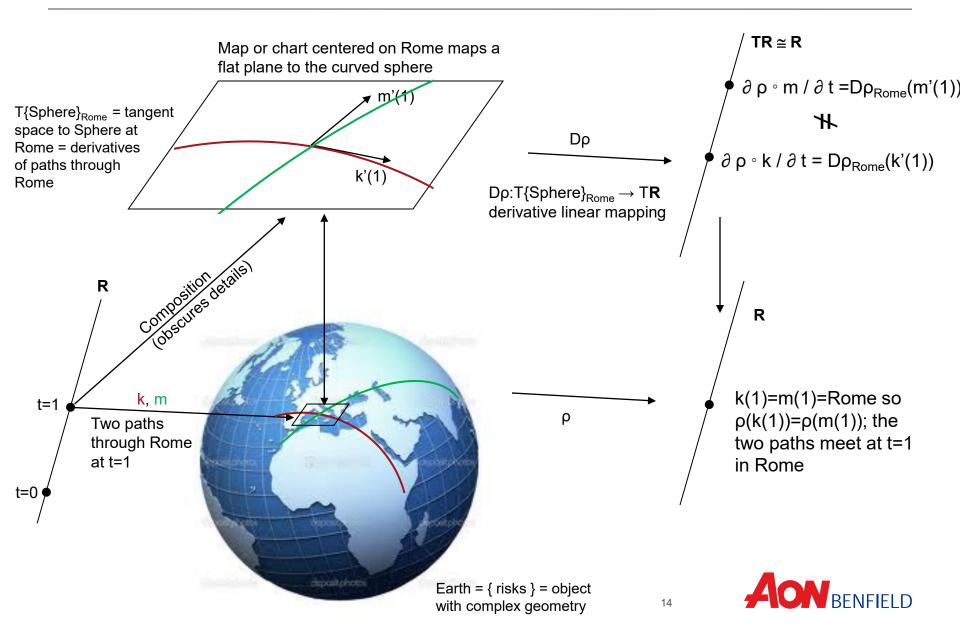
- Geometric Brownian motion model is homogeneous wrt volume
 - $S_t = S_0 \exp((\mu \sigma^2/2)t + \sigma B_t)$, where B_t is a Brownian motion
 - Volume = S_0
 - Return = exp((μ $\sigma^2/2$) t + σ B_t)
 - It is not homogeneous wrt to time t

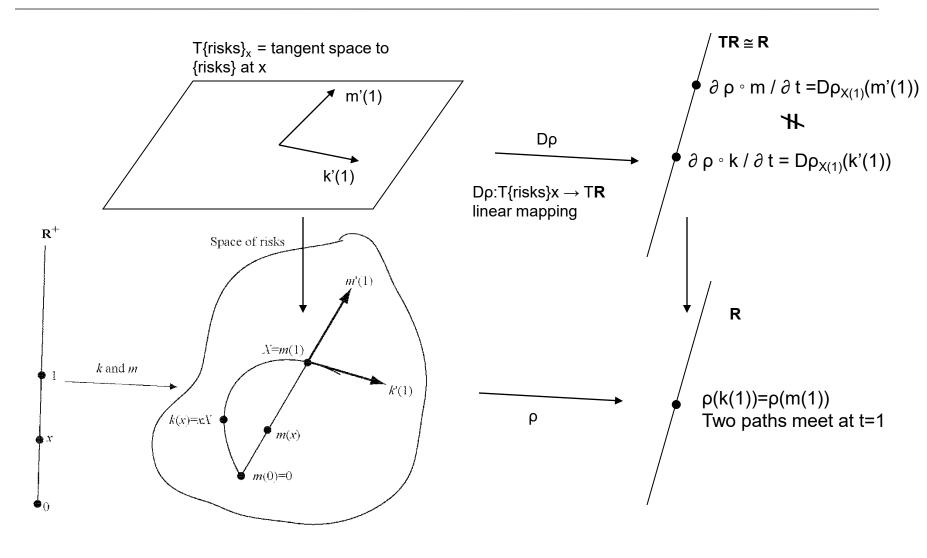
- Consider tX₁ as a homogeneous approximation to a process X_t, agreeing at t=1
- Local approximation: one holding to first order in a neighborhood of a point
 - First-order equality required by any theory considering derivatives or marginal impacts
 - Myers-Read and gradient based methods of capital allocation
 - Equality at a point does not imply first order approximation
- Requires notion of derivative which requires a direction

- Recall the time/volume symmetry
 - E[A(x,t)] = xt = expected loss

and to be consistent with stochastic process literature assume volume x=1 is fixed and let t proxy volume or time


- Model losses X(t) as a (mixed) compound Poisson distribution and suppose
 - Expected claim count = t
 - E(severity) = 1
 - So E(X(t)) = E(severity) x E(claim count) = t
- A homogeneous approximation to the family X(t) near t = 1 is given by t X(1)
- We will show this is **not** a local approximation
- Have two maps from $[0,\infty) \rightarrow \{ risks \}$, agreeing at t = 1:
 - -m(t) = X(t), compound Poisson claim count t, (Glenn) <u>Meyers embedding</u>; not homogeneous
 - k(t) = t X(1), asset or <u>K</u>alkbrener embedding; homogeneous by construction


- Let ρ : { risks } \rightarrow **R** be a real-valued risk measure
 - Standard deviation, downside risk, higher moment, percentile (=Value-at-Risk, VaR), TVaR
 - Tasche, Denault, Fischer, Myers-Read,... show we should be interested in $\partial \rho / \partial t$, the rate of change of ρ with volume, in a given line of business or risk type
- Two compositions ρ ∘ k, ρ ∘ m: [0,∞) → { risks } → R both give single valued functions of a single real variable t, and we can often easily compute derivatives
- For ρ = standard deviation and severity = 1 (so the compound Poisson is just Poisson) we have
 - $-\rho \circ m(t) = \rho(m(t)) = std dev(Poisson(t)) = \sqrt{t}$, but
 - $-\rho \circ k(t) = \rho(k(t)) = \text{std dev}(t \text{ Poisson}(1)) = t, \text{ and so } \partial(\rho \circ k) / \partial t = 1 \neq \partial(\rho \circ m) / \partial t = t^{-1/2}/2$
- Looking at the compositions masks the complexity of the embedding "paths" k and m in { risks }
- In terms of derivatives of ρ, "Dρ_{at a "point"=random variable X(1)}(in a direction = k'(1))", example shows
 - $D\rho_{X(1)}(k'(1)) := \partial (\rho \circ k) / \partial t \neq \partial (\rho \circ m) / \partial t =: D\rho_{X(1)}(m'(1))$
 - − $D\rho_{X(1)}(k'(1)) \neq D\rho_{X(1)}(m'(1))$ implies directions m'(1) ≠ k'(1) are different
- What are the directions m'(1) and k'(1)? What do these intermediate derivatives mean?
 - In the asset setting there are no mysteries for k: working in a vector space setting



Serendipitous Moment...

Why is m drawn as the straight line or ray (half-line)?

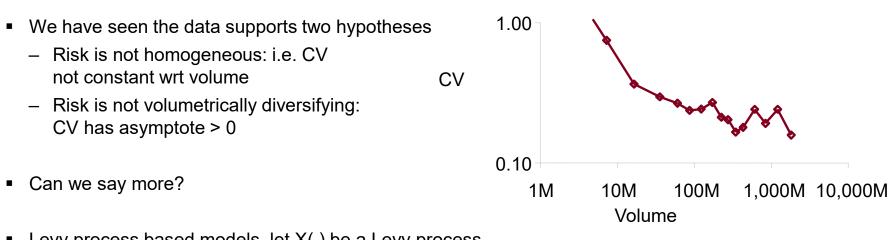
Table 1: Possible characterizations of a ray in \mathbb{R}^n

Characterization of ray	Required structure on \mathbb{R}^n	
α is the shortest distance between	Notion of distance in \mathbb{R}^n , differen-	
$\alpha(0)$ and $\alpha(1)$	tiable manifold	
$\alpha''(t) = 0$, constant velocity, no ac-	Very complicated on a general man-	
celeration	ifold.	
		Asset return model,
$\alpha(t) = t\mathbf{x}, \mathbf{x} \in \mathbb{R}^n.$	Vector space structure	vectors x represent return
		distributions
$\alpha(s+t) = \alpha(s) + \alpha(t)$	Can add in domain and range, semi-	
	group structure only.	

- What is the addition operator "+" in { risks }?
 - Assets: vector space structure with basis of return variables
 - 3X ok = own three stocks etc.
 - Insurance: convolution of random variables
 - 3X not ok = over-insurance
 - $X_1 + X_2 + X_3$ ok using convolution sum of distributions

- Defining property for straight-line in { risks }: let X_t have distribution m(t) so $Pr(X_t < x) = m((-,x])$
 - $m(s + t) = m(s) \star m(t)$, convolution sum of random variables
- Levy process satisfies $m(s + t) = m(s) \star m(t)$ and so is **appropriate notion of a straight line**
 - Additive, independent, homogeneous increments, stochastically continuous
- Examples of Levy processes
 - Brownian motion, compound Poisson, drift, combinations
- What are k'(1) and m'(1)?
 - m_t defines a family of probability measures
 - Properties manifest through **operator action** on functions < f, $m_t > = \int f(x) dm_t(x) = E(f(X_t))$
 - Derivative should be a **family of linear functionals** $f \rightarrow m_t'(f)$ indexed by t
 - Fundamental Theorem of Calculus: $\langle f, m(1) \rangle \langle f, m(0) \rangle = \int_0^1 m_t'(f) dt$
 - Differentially: let A(f)(x) = lim_{s→0+} [E(f(x+X_s) f(x))] / s, then the derivative operator f → m_t'(f) satisfies m_t'(f) = < Af, m_t >

- $A(f)(x) := \lim_{s \to 0^+} [E(f(x+X_s) f(x))] / s$ defines the infinitesimal generator A of the Markov process X_t
- For compound Poisson m, let J be distribution of jump sizes (severity)
- For small t, $Pr(jump) = \lambda t + O(t^2)$, so, conditioning on presence of a jump,


$$- A(f)(x) = \lim_{s \to 0^+} \left[E(f(x+X_s)) - f(x)) \right] / s = \left[\lambda s E(f(x+J)) + (1 - \lambda s) f(x) - f(x) \right] / s = \lambda \left(E(f(x+J)) - f(x) \right)$$

and hence

- $m_t'(f) = \langle Af, m_t \rangle = \lambda E[f(X_t+J) f(X_t)]$, note expectation over independent variables X_t and J
- For k embedding k(t) = tX, A(f)(x) = E(X)f'(x) and so
 - $k_t'(f) = \langle Af, m_t \rangle = E[E(X) f'(tX)] = E(X)E(f'(tX))$, which is completely different
- If J=1 is constant, so $X_t = Poisson(\lambda t)$ and $k(t) = kX_1$
 - $m_{t}'(f) = \lambda E[f(X_{t} + 1)) f(X_{t})]$
 - $k_t'(f) = E(X) E(f'(tX)) = \lambda E(f'(tX))$
- If X_t includes a Brownian motion then A becomes a second order differential operator using Ito calculus
- Finally, $\lambda E[f(X_t+J) f(X_t)]$ is a plausible risk measure for different functions f

5. Empirical Evidence

- Levy process based models, let X(.) be a Levy process
 - A(x,t) = X(xt)

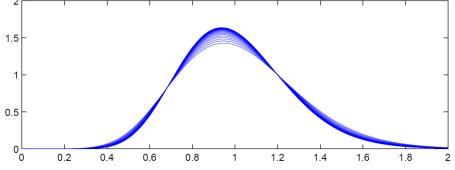
volumetric/temporal symmetry

- A(x,t) = X(xZ(t))
- A(x,t) = X(xCt)
- A(x,t) = X(xCZ(t))

- Z a positive, increasing Levy process (a subordinator), e.g. seasons
- E(C)=1, C is called a **mixing variable** (Heckman-Meyers)
- The mixing variable appears unobservable, but can actually be derived from empirical data
- Tame severity distributions are irrelevant

Mixing Variables & the Distribution of Normalized Loss Ratios

- Mixed compound Poisson: A = X₁+...+X_N, N|C ~ Poisson(nC), E(C)=1
- Normalized Loss Ratio NLR = A / E(A)
- Dichotomous behavior of normalized loss ratios


No parameter uncertainty: leads to unrealistic aggregate loss distribution as expected losses increase

35 30 25 20 15 10 5 0.0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

If C is constant, NLR converges to 1.0 in distribution

Illustration shows aggregates with Poisson frequency and larger & larger values of E(A)

Including parameter preserves actual variability observed in data for large insurers

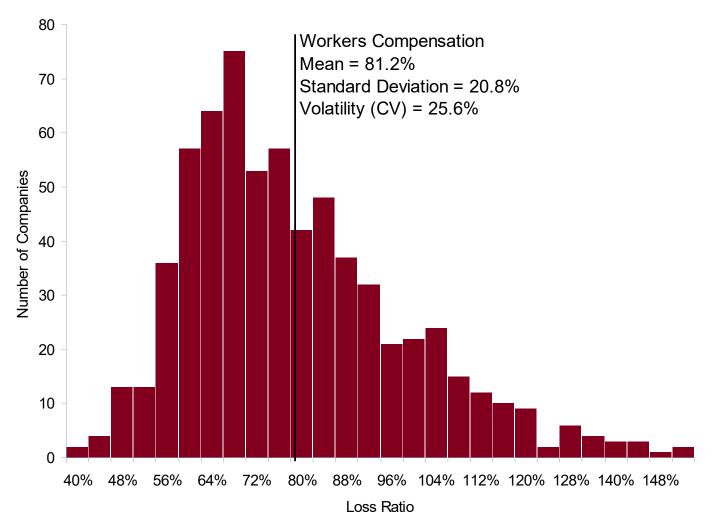
If C is not constant, NLR converges to C in distribution

Illustration shows aggregates with negative binomial frequency (gamma mixing) & larger & larger values of E(A)

Key Technical Result

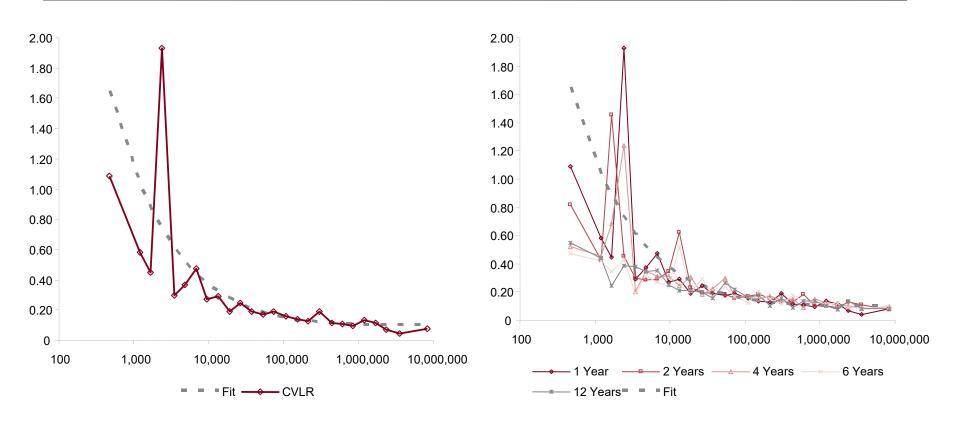
- If severity X has a variance then A / E(A) converges in distribution to C as expected claim count tends to infinity
- Proof:

Let M_D be the moment generating function $M_D(t) = E(exp(tD))$ of D, for D=A, C, N or X. Let x=E(X), n=E(N), a=E(A)=nx. Then


$$\begin{split} \lim_{n \to \infty} M_{A/a}(t) &= \lim_{n \to \infty} M_A(t/a) \\ &= \lim_{n \to \infty} M_C(n(M_X(t/a) - 1)) \\ &= \lim_{n \to \infty} M_G(n(M_X'(0)t/nx + R(t/nx))) \\ &= \lim_{n \to \infty} M_C(t + nR(t/nx)) \\ &= M_C(t) \end{split}$$

For some remainder function $R(t)=O(t^2)$. The assumptions on X guarantee that $M_X'(0)=x=E(X)$ & that the reminder term in Taylor's expansion is $O(t^2)$. The result follows because a distribution is uniquely determined by its moment generating function.

 Result has important implications for parameterizing economic capital simulation models and for understanding correlation between different lines of business



5. Empirical Evidence: Systemic Insurance Risk by Line

5. Empirical Evidence: Volumetric/Temporal Symmetry

Consider volatility of A(x,t), A(2x,t/2), A(4x,t/4) etc.

- Same relationship between volatility and volume, xt
- Data consistent with volumetric/temporal symmetry and with model A(x,t) = X(xCt)

6. Four Levy Process Models

- A(x,t) = X(xt) no Volumetrically diversifying
- A(x,t) = X(xZ(t)) no
 Volumetric/temporal asymmetry
- A(x,t) = X(xCt) Yes Not volumetrically diversifying, volumetric/temporal symmetry
- A(x,t) = X(xCZ(t)) no
- Volumetric/temporal asymmetry
- A(x,t) = xR(t) no Constant

Constant volatility with volume

			Divers	sifying	-
Model	Variance	v(x,t)	$x \to \infty$	$t \to \infty$	-
X(xt)	$\sigma^2 x t$	$\frac{\sigma}{\sqrt{xt}}$	Yes	Yes	Variance and coefficient of variation v of each model
X(xZ(t))	$xt(\sigma^2 + x\tau^2)$	$\sqrt{\frac{\sigma^2}{xt} + \frac{\tau^2}{t}}$	No	Yes	
X(xCt)	$xt(\sigma^2 + cxt)$	$\sqrt{\frac{\sigma^2}{xt} + c}$	No	No	
X(xCZ(t))	$x^{2}t^{2}\left(\frac{(c+1)\tau^{2}}{t}+c\right) + \sigma^{2}xt$	$\sqrt{\frac{\sigma^2}{xt} + \frac{\tau'^2}{t} + c}$	No	No	
xX(t)	$x^2\sigma^2 t$	σ/\sqrt{t}	Const.	Yes	24 AON BENFIELD

7. Why bother with Levy Processes?

- Paper uses compound Poisson distributions as examples for simplicity
- Why bother with general Levy processes?
 - Academically interesting / publishing cottage industry!
- "Infinite activity" Levy processes include processes with X(1) distributed as
 - Lognormal
 - Pareto
 - Gamma
 - Laplace
 - Weibull (α <1; α >1 is not infinitely divisible)
 - Allows for negative jumps but positive creep
- Use of infinitesimal generator as a risk measure through norm of operator appears interesting

8. So What? Can we see the Impact in Prices?

- Idiosyncratic risk matters, price should decrease with size
 - Price = margin or spread over actuarial rate
 - Size = expected loss = xt; t=1
 - "Large" depends on particulars of severity distribution
- Umbrella and high limit policies
 - Companies target higher price and lower combined ratio for higher process risk
- Reinsurer notion of "balance"
 - Unbalanced cover has premium < limit
- Property per risk reinsurance
 - Large limits; unbalanced
 - Historically very expensive
- Large accounts, package policies
 - Probably top-line focus rather than risk theory
- Myers-Cohn
 - Impact of inhomogeneity apparent around volume typical of company business unit or allocation unit

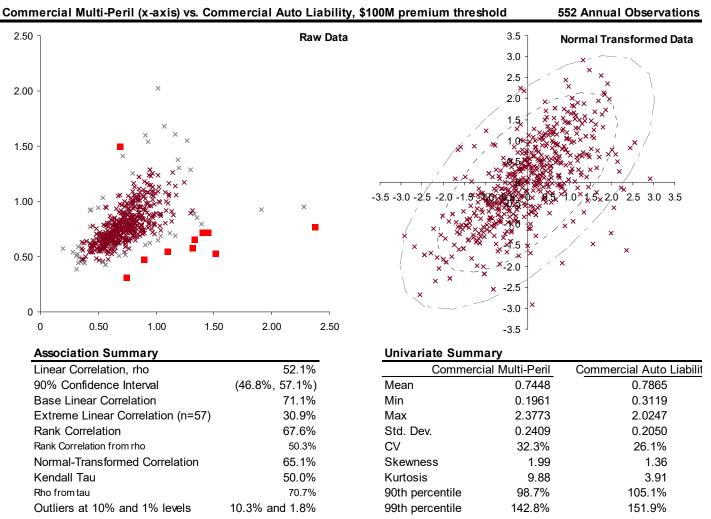
US Statutory Loss Ratio Correlations

\$100M Premium Threshold in Both Lines

First Year	1992			Evaluation	latest			Premium Three	shold (\$M)	100.0
Last Year	2007			Gross or Net	G			Averages		straight
				_						
	-			Correlat	<u>ion Coeffic</u>	ients				
Raw	Line B									
Line A	All	Home	PPAuto	CMP	CommAuto	WorkComp	OtherLiabOcc	MedMalCM	OtherLiabCM	ProdLiab-Occ
All	1.000	0.635	0.553	0.774	0.670	0.758	0.736	0.704	0.570	0.618
Home	0.635	1.000	0.069	0.198	0.079	-0.086	-0.021	-0.091	-0.043	0.102
PPAuto	0.553	0.069	1.000	0.250	0.281	0.305	0.295	0.314	0.366	0.270
CMP	0.774	0.198	0.250	1.000	0.528	0.432	0.503	0.595	0.423	0.427
CommAuto	0.670	0.079	0.281	0.528	1.000	0.627	0.685	0.725	0.451	0.752
WorkComp	0.758	-0.086	0.305	0.432	0.627	1.000	0.638	0.759	0.572	0.605
OtherLiabOcc	0.736	-0.021	0.295	0.503	0.685	0.638	1.000	0.802	0.606	0.641
MedMalCM	0.704	-0.091	0.314	0.595	0.725	0.759	0.802	1.000	0.731	0.797
OtherLiabCM	0.570	-0.043	0.366	0.423	0.451	0.572	0.606	0.731	1.000	0.229
ProdLiab-Occ	0.618	0.102	0.270	0.427	0.752	0.605	0.641	0.797	0.229	1.000
No Market Risk	Line B									
Line A	All	Home	PPAuto	CMP	CommAuto	WorkComp	OtherLiabOcc	MedMalCM	OtherLiabCM	ProdLiab-Occ
All	1.000	0.645	0.462	0.649	0.420	0.547	0.545	0.567	0.288	0.368
Home	0.645	1.000	0.071	0.083	0.080	-0.098	0.002	-0.167	0.068	0.123
PPAuto	0.462	0.071	1.000	0.082	0.047	0.143	0.107	0.155	0.107	0.372
CMP	0.649	0.083	0.082	1.000	0.321	0.281	0.285	0.046	0.158	0.222
CommAuto	0.420	0.080	0.047	0.321	1.000	0.394	0.440	0.273	0.128	0.371
WorkComp	0.547	-0.098	0.143	0.281	0.394	1.000	0.226	0.316	0.005	0.386
OtherLiabOcc	0.545	0.002	0.107	0.285	0.440	0.226	1.000	0.377	0.251	0.371
MedMalCM	0.567	-0.167	0.155	0.046	0.273	0.316	0.377	1.000	0.426	0.206
OtherLiabCM	0.288	0.068	0.107	0.158	0.128	0.005	0.251	0.426	1.000	0.099
ProdLiab-Occ	0.368	0.123	0.372	0.222	0.371	0.386	0.371	0.206	0.099	1.000

Numbers in gray not statistically significantly different from zero at 90% level

9. Observed Correlations and Copulas

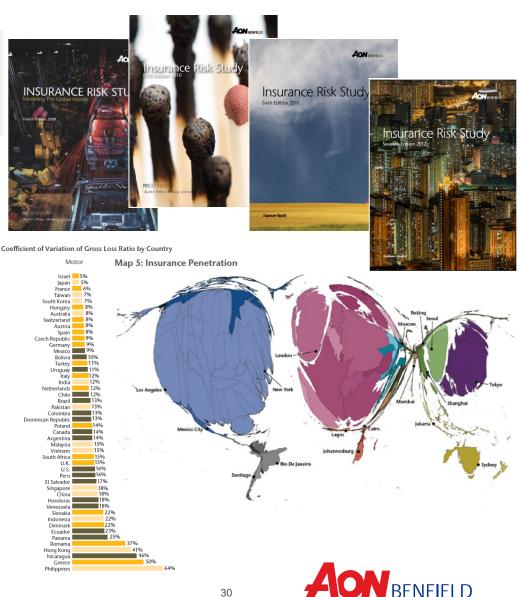

First Year	1992			Evaluation	latest			Premium Thres	shold (\$M)	100.0
Last Year	2007			Gross or Net	G			Averages		straigh
		90.	.0% Confid	lence Inter	val for Cor	relation Co	oefficients			
Raw	Line B									
Line A	All	Home	PPAuto	CMP	CommAuto	WorkComp	OtherLiabOcc	MedMalCM	OtherLiabCM	ProdLiab-Occ
All	1	(0.60, 0.67)	(0.52, 0.58)	(0.75, 0.80)	(0.63, 0.70)	(0.73, 0.78)	(0.71, 0.76)	(0.65, 0.75)	(0.50, 0.63)	(0.51, 0.71)
Home	(0.60, 0.67)	1	(0.01, 0.13)	(0.12, 0.27)	(-0.01, 0.16)	(-0.17, 0.00)	(-0.11, 0.07)	(-0.32, 0.14)	(-0.18, 0.09)	(-0.09, 0.29)
PPAuto	(0.52, 0.58)	(0.01, 0.13)	1	(0.18, 0.32)	(0.21, 0.35)	(0.23, 0.37)	(0.22, 0.37)	(0.11, 0.50)	(0.25, 0.47)	(0.09, 0.44)
CMP	(0.75, 0.80)	(0.12, 0.27)	(0.18, 0.32)	1	(0.47, 0.58)	(0.37, 0.49)	(0.44, 0.56)	(0.46, 0.71)	(0.33, 0.51)	(0.28, 0.56)
CommAuto	(0.63, 0.70)	(-0.01, 0.16)	(0.21, 0.35)	(0.47, 0.58)	1	(0.58, 0.67)	(0.64, 0.72)	(0.62, 0.81)	(0.36, 0.54)	(0.67, 0.82)
WorkComp	(0.73, 0.78)	(-0.17, 0.00)	(0.23, 0.37)	(0.37, 0.49)	(0.58, 0.67)	1	(0.59, 0.68)	(0.67, 0.83)	(0.49, 0.64)	(0.49, 0.70)
OtherLiabOcc	(0.71, 0.76)	(-0.11, 0.07)	(0.22, 0.37)	(0.44, 0.56)	(0.64, 0.72)	(0.59, 0.68)	1	(0.73, 0.86)	(0.54, 0.67)	(0.53, 0.73)
MedMalCM	(0.65, 0.75)	(-0.32, 0.14)	(0.11, 0.50)	(0.46, 0.71)	(0.62, 0.81)	(0.67, 0.83)	(0.73, 0.86)	1	(0.64, 0.81)	(0.68, 0.88)
OtherLiabCM	(0.50, 0.63)	(-0.18, 0.09)	(0.25, 0.47)	(0.33, 0.51)	(0.36, 0.54)	(0.49, 0.64)	(0.54, 0.67)	(0.64, 0.81)	1	(0.05, 0.39)
ProdLiab-Occ	(0.51, 0.71)	(-0.09, 0.29)	(0.09, 0.44)	(0.28, 0.56)	(0.67, 0.82)	(0.49, 0.70)	(0.53, 0.73)	(0.68, 0.88)	(0.05, 0.39)	1
No Market Risk	Line B									
Line A	All	Home	PPAuto	CMP	CommAuto	WorkComp	OtherLiabOcc	MedMalCM	OtherLiabCM	ProdLiab-Occ
All	1	(0.61, 0.68)	(0.42, 0.50)	(0.61, 0.68)	(0.37, 0.47)	(0.51, 0.58)	(0.50, 0.59)	(0.49, 0.63)	(0.20, 0.37)	(0.22, 0.50)
Home	(0.61, 0.68)	1	(0.01, 0.13)	(0.00, 0.16)	(0.00, 0.16)	(-0.18, -0.01)	(-0.09, 0.10)	(-0.38, 0.06)	(-0.07, 0.20)	(-0.07, 0.31)
PPAuto	(0.42, 0.50)	(0.01, 0.13)	1	(0.01, 0.16)	(-0.03, 0.12)	(0.07, 0.22)	(0.02, 0.19)	(-0.06, 0.36)	(-0.02, 0.23)	(0.20, 0.53)
CMP	(0.61, 0.68)	(0.00, 0.16)	(0.01, 0.16)	1	(0.25, 0.39)	(0.21, 0.35)	(0.21, 0.36)	(-0.14, 0.23)	(0.05, 0.26)	(0.06, 0.38)
CommAuto	(0.37, 0.47)	(0.00, 0.16)	(-0.03, 0.12)	(0.25, 0.39)	1	(0.33, 0.45)	(0.38, 0.50)	(0.09, 0.44)	(0.01, 0.24)	(0.22, 0.51)
WorkComp	(0.51, 0.58)	(-0.18, -0.01)	(0.07, 0.22)	(0.21, 0.35)	(0.33, 0.45)	1	(0.15, 0.30)	(0.14, 0.48)	(-0.11, 0.12)	(0.24, 0.52)
OtherLiabOcc	(0.50, 0.59)	(-0.09, 0.10)	(0.02, 0.19)	(0.21, 0.36)	(0.38, 0.50)	(0.15, 0.30)	1	(0.22, 0.52)	(0.15, 0.35)	(0.22, 0.51)
MedMalCM	(0.49, 0.63)	(-0.38, 0.06)	(-0.06, 0.36)	(-0.14, 0.23)	(0.09, 0.44)	(0.14, 0.48)	(0.22, 0.52)	1	(0.27, 0.56)	(-0.06, 0.44)
OtherLiabCM	(0.20, 0.37)	(-0.07, 0.20)	(-0.02, 0.23)	(0.05, 0.26)	(0.01, 0.24)	(-0.11, 0.12)	(0.15, 0.35)	(0.27, 0.56)	1	(-0.08, 0.27)
ProdLiab-Occ	(0.22, 0.50)	(-0.07, 0.31)	(0.20, 0.53)	(0.06, 0.38)	(0.22, 0.51)	(0.24, 0.52)	(0.22, 0.51)	(-0.06, 0.44)	(-0.08, 0.27)	1

Number of Observations

Line A	All	Home	PPAuto	CMP	CommAuto	WorkComp	OtherLiabOcc	MedMalCM	OtherLiabCM	ProdLiab-Occ
All	4400	852	1260	702	671	1022	653	248	296	99
Home	852	852	722	423	388	378	308	52	144	73
PPAuto	1260	722	1260	453	483	455	376	61	167	77
CMP	702	423	453	702	488	516	435	79	222	97
CommAuto	671	388	483	488	671	543	464	77	204	98
WorkComp	1022	378	455	516	543	1022	477	80	221	99
OtherLiabOcc	653	308	376	435	464	477	653	88	249	98
MedMalCM	248	52	61	79	77	80	88	248	87	41
OtherLiabCM	296	144	167	222	204	221	249	87	296	87
ProdLiab-Occ	99	73	77	97	98	99	98	41	87	99

9. Observed Correlations and Copulas

Note: 1% outliers from normal copula marked in red. 10% and 1% and confidence intervals show on right.



10. How the Results are Used

Aon Benfield Insurance Risk Study Informed Parameterization of Risk Models

Objective

- Insurance Risk Study determines credible global insurance volatility benchmarks for use in underwriting risk modeling
- Motivation: robust empirical quantification of all aspects of underwriting risk
- Systemic volatility parameters by country, by line
 - Forty eight countries, 90% of global premium
 - Results for eight core lines of business
 - Available as input to any simulation tool
- Loss ratio correlation between lines within country and between countries
- Assessment of US reserve risk
- Correlation between macroeconomic and insurance variables
- Economic and insured loss potential from major catastrophe risks globally
- Recognized by major US rating agencies
- Published annually in August
- Seventh edition released in 2012

Contact Information

Stephen J. Mildenhall, PhD, FCAS, ASA, CERA Aon Benfield Analytics Chicago, IL +1.312.381.5880 (office) / +1.312.961.8781 (cell) stephen.mildenhall@aonbenfield.com

