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1. Insurance Pricing Frameworks

1900s Bachelier Bureau rates
Cramer-Lundberg Bureau rates
1930s Esscher
Bureau rates
Levy, Kolmogorov,
1950s Khintchine, Ito
Portfolio theory Bureau rates
1960s CAPM Bailey investment inc.
Systemic vs. diversifiable Ferrari, ROE
1970 Buhlmann risk
S Borch 1978 ind. u/w profit
Option pricing, no
1980s arbitrage, comparables
Cat Models
1990s Artzner et al. coherent
measure of risk Phillips, Cummins, Allen Idiosyncratic risk
2000s Wang transform Myers-Read matters (Froot 2001)
2010s Levy processes, Frootet al. 2004 ind. u/w profit
optimal dividends Zanjani Debt vs. equity
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2. Insurance Risk is not Volumetrically Diversifying

= Expected Loss ($) = Volume ($ / t) x Time (t)

» A(x,t) := random variable representing aggregate losses from volume x insured for time t
— E[ A(x,t) ] = xt = expected loss

» Insurance risk is not volumetrically diversifying, meaning
— CV( A(x,t) ) does not tend to zero as x increases, for fixed t
— Recall coefficient of variation = CV = standard deviation / mean

» Practical meaning
— ltis impossible to diversify away all insurance risk by growing larger

= How to investigate?
— CV(A)=CV(A/p)= CV(lossratio), p = fixed premium
— Look at volatility in loss ratio with volume
— Premium (and company) effects can be removed using an ANOVA,; does not change conclusions

= Data source: NAIC Annual Statement, Schedule P
— Gross, ultimate loss ratios with 10 accident year history for most lines
— Major lines: WC, Commercial Auto, HO, PPA, CMP, Other Liability etc.
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2. Risk is not Volumetrically Diversifying

2004 CV Gross Loss Ratio vs. Premium Commerical Multiperil

= Volatility decreases to asymptote > 0

10.00
= not volumetrically diversifying
= Volatility not constant = not homogeneous
St Q 4 »= Analogous to systemic risk in stock portfolio
1.00 e Tl
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Log(Premium) $000

x CV(LR) ====Fit, CV=33.0% —Fit, No Param Risk
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Asymptote is a
risk charact-
eristic for each
line

It varies
substantially
across lines

It is reasonably
constant over
time
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3. Insurance Losses are not Homogeneous with Respect to Volume

= Homogeneous model: A(x,t) = xR,
— R, a “return” random variable independent of volume x
— For assets x is position size and R; is return or unit price

— Introduces a natural vector space structure for assets, with basis the return vectors R,

» Homogeneity implies
— Shape of aggregate loss distribution independent of volume
— No volume based diversification

— A(x,t) has constant coefficient of variation (volatility) with x

» Homogeneous models are not appropriate for insurance
— Consider probability of zero losses: Pr(xX=0) = Pr(X=0)

— Implies the probability of observing a zero loss is independent of volume x
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3. Insurance Losses are not Homogeneous with Respect to Volume
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Compound Poisson aggregate losses, average severity 10
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3. Insurance Losses are not Homogeneous with Respect to Volume

= Geometric Brownian motion model is homogeneous wrt volume
— S;=S, exp( (- 0%/2)t+ 0oB,), where B,is a Brownian motion

— Volume = S,

— Return = exp( (u- 0%/2) t + 0B,)

— Itis not homogeneous wrt to time t
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4. Homogeneity is not “Locally” Appropriate

Local Not a local
approximation approximation

= Consider tX, as a homogeneous approximation to a process X,, agreeing at t=1

» Local approximation: one holding to first order in a neighborhood of a point
— First-order equality required by any theory considering derivatives or marginal impacts
* Myers-Read and gradient based methods of capital allocation
— Equality at a point does not imply first order approximation

» Requires notion of derivative which requires a direction Am
BENFIELD
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4. Homogeneity is not “Locally” Appropriate

» Recall the time/volume symmetry
— E[ A(x,t) ] = xt = expected loss

and to be consistent with stochastic process literature assume volume x=1 is fixed and let t proxy
volume or time

= Model losses X(t) as a (mixed) compound Poisson distribution and suppose
— Expected claim count =t
— E(severity) =1
— So E(X(t)) = E(severity) x E(claim count) = t
» A homogeneous approximation to the family X(t) near t = 1 is given by t X(1)
= We will show this is not a local approximation
= Have two maps from [0,) — { risks }, agreeing att = 1:

— m(t) = X(t), compound Poisson claim count t, (Glenn) Meyers embedding; not homogeneous

— Kk(t) =t X(1), asset or Kalkbrener embedding; homogeneous by construction

1 AMBENFIELD



4. Homogeneity is not “Locally” Appropriate

» Letp:{risks } — R be a real-valued risk measure
— Standard deviation, downside risk, higher moment, percentile (=Value-at-Risk, VaR), TVaR

— Tasche, Denault, Fischer, Myers-Read,... show we should be interested in d p/ dt, the rate of
change of p with volume, in a given line of business or risk type

= Two compositions p ° k, p - m: [0,<) — { risks } — R both give single valued functions of a single real
variable t, and we can often easily compute derivatives

= For p = standard deviation and severity = 1 (so the compound Poisson is just Poisson) we have
— p°m(t) = p(m(t)) = std dev( Poisson(t) ) = V t, but
— pe k()= p(k(t)) = std dev( t Poisson(1) )=t, andso d(p°k)/dt=1 # d(p°-m)/dt=t"122
» Looking at the compositions masks the complexity of the embedding “paths” k and m in { risks }
= In terms of derivatives of p, “Dp,t 4 point=random variable x(1)(IN @ direction = k’(1))”, example shows
— Dpyy(K(1)) :=d(p-k)/at # d(p>m)/at = Dpyyy(m'(1))

— Dpyxuy(K'(1)) # Dpx)(m’(1)) implies directions m’(1) # k’(1) are different

» What are the directions m’(1) and k'(1)? What do these intermediate derivatives mean?
— In the asset setting there are no mysteries for k: working in a vector space setting
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4. Homogeneity is not “Locally” Appropriate

Map or chart centered on Rome maps a TR=R
flat plane to the curved sphere

’ Z p°m /ot =DpRome(m’(1))
T{Sphere}z,me = tangent
space to SF;)here at D -
Rome = derivatives P ,
of paths through ) —> 0p°k/ot=Dpremek(1))
Rome Dp:T{Sphere}gore — TR

7 N derivative linear mapping

v R
t=1 — k(1)=m(1)=Rome so
Two paths P p(k(1))=p(m(1)); the
through Rome two paths meet at t=1
at t=1 ' in Rome

t=0

Earth = { risks } = object A
with complex geometry 14 WBENH ELD



4. Homogeneity is not “Locally” Appropriate

T{risks}, = tangent space to
{risks} at x

m'(1)

K(1)

Space of risks

Dp

TRz=R

0 p°m/dt=Dpy,(m(1))
-

— P opk/at=Dpyk(1))

Dp:T{risks}x — TR

linear mapping

— p(k(1))=p(m(1))
Two paths meet at t=1
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4. Homogeneity is not “Locally” Appropriate

» Why is m drawn as the straight line or ray (half-line)?

Table 1: Possible characterizations of a ray in R”

Characterization of ray Required structure on R"
« is the shortest distance between | Notion of distance in R", differen-
a(0) and «(1) tiable manifold

a”(t) = 0, constant velocity, no ac- | Very complicated on a general man-

celeration ifold.

Asset return model,

a(t) = ix, x € R", Vector space structure vectors x represent return
distributions

a(s +1) = al(s) + alt) Can add in domain and range, semi-

group structure only.

» What is the addition operator “+” in { risks }?

— Assets: vector space structure with basis of return variables
« 3X ok = own three stocks etc.

— Insurance: convolution of random variables
* 33X not ok = over-insurance
+ X4+ X, + X; 0k using convolution sum of distributions
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4. Homogeneity is not “Locally” Appropriate

= Defining property for straight-line in { risks }: let X; have distribution m(t) so Pr(X;<x) = m((- ,x])

m(s + t) = m(s) * m(t), convolution sum of random variables

= Levy process satisfies m(s + t) = m(s) * m(t) and so is appropriate notion of a straight line
— Additive, independent, homogeneous increments, stochastically continuous

» Examples of Levy processes

Brownian motion, compound Poisson, drift, combinations

= Whatare k'(1) and m’(1)?

m, defines a family of probability measures

Properties manifest through operator action on functions < f, m, > = [ f(x) dm,(x) = E(f(X,))
Derivative should be a family of linear functionals f — m/(f) indexed byt

Fundamental Theorem of Calculus: <f, m(1)>—-<f, m(0) > = I; m,’(f) dt

Differentially: let A(f)(x) = limg_,,, [ E(f(x+X,) —f(x)) ]/ s, then the derivative operator f — m/(f)

satisfies m/(f) = < Af, m,>
17 AMBENFIELD



4. Homogeneity is not “Locally” Appropriate

= A(f)(x) :=limg_q, [ E(f(x+X,) —f(x)) ]/ s defines the infinitesimal generator A of the Markov process X,
» For compound Poisson m, let J be distribution of jump sizes (severity)
= For small t, Pr(jump) = At + O(t2), so, conditioning on presence of a jump,
— A(f)(x) = limgso. [E(f(x+Xs)) —f(x)) /s = [As E(f(x+J)) + (1 - As) f(x) — f(x) ] /'s = A (E(f(x+J)) - f(x))
and hence
- m{(f) = <Af, m;> = AE[ f(X,+J) — f(X;) ], note expectation over independent variables X, and J
» For k embedding k(t) = tX, A(f)(x) = E(X)f(x) and so
— k/(f) = < Af, m; > = E[ E(X) f'(tX) ] = E(X)E(f’(tX)), which is completely different
» |f J=1is constant, so X; = Poisson(At) and k(t) = kX,

— m{(f) = ANE[f(X; + 1)) = (X)) ]
— k() = E(X) E(F(tX)) = A E( P(tX) )

» |f X, includes a Brownian motion then A becomes a second order differential operator using Ito calculus

= Finally, A E[ f(X+J) — f(X,) ] is a plausible risk measure for different functions f AMBENFIELD
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5. Empirical Evidence

= We have seen the data supports two hypotheses 1.00

— Risk is not homogeneous: i.e. CV
not constant wrt volume CcV

— Risk is not volumetrically diversifying:
CV has asymptote > 0

0.10
= Can we say more? 1M 10M  100M 1,000M 10,000M
Volume
= Levy process based models, let X(.) be a Levy process
— A(x,t) = X(xt) volumetric/temporal symmetry
— A(x,t) = X( xZ(t) ) Z a positive, increasing Levy process (a subordinator), e.g. seasons
— A(x,t) = X(xCt) E(C)=1, C is called a mixing variable (Heckman-Meyers)
— A(x,t) = X( xCZ(t) )

» The mixing variable appears unobservable, but can actually be derived from empirical data

= Tame severity distributions are irrelevant

19 AMBENFIELD



Mixing Variables & the Distribution of Normalized Loss Ratios

Mixed compound Poisson: A = X,+...+X, N|C ~ Poisson(nC), E(C)=1
Normalized Loss Ratio NLR = A/ E(A)
Dichotomous behavior of normalized loss ratios

No parameter uncertainty: leads to Including parameter preserves actual
unrealistic aggregate loss distribution as variability observed in data for large
expected losses increase insurers
35 T 2

T
|

I I | = == 1 1 I | 1 ! I 1 I i
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

If C is constant, NLR converges to 1.0 in If C is not constant, NLR converges to C in
distribution distribution

lllustration shows aggregates with Poisson lllustration shows aggregates with negative
frequency and larger & larger values of E(A) binomial frequency (gamma mixing) & larger &

larger values of E(A)
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Key Technical Result

» [f severity X has a variance then A / E(A) converges in distribution to C as expected claim count tends
to infinity

= Proof:

Let My be the moment generating function Mp(t) = E(exp(tD)) of D, for D=A, C, N or X. Let
x=E(X), n=E(N), a=E(A)=nx. Then

lim, . M, (t)=lim__ M,(t/a)
=lim__ M.(n(M,(t/a)-1))
=lim___ M (n(M,(0)t/nx + R(t/ nx)))
=lim__ M.(t+nR(t/nx))
= Mc(t)
For some remainder function R(t)=O(t?). The assumptions on X guarantee that M,’(0)=x=E(X) &

that the reminder term in Taylor's expansion is O(t2). The result follows because a distribution is
uniquely determined by its moment generating function.

» Result has important implications for parameterizing economic capital simulation models and for
understanding correlation between different lines of business
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5. Empirical Evidence: Systemic Insurance Risk by Line
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Mean = 81.2%
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Volatility (CV) = 25.6%
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5. Empirical Evidence: Volumetric/Temporal Symmetry

2.00 2.00
1.80 1.80
1.60 ] 1.60
1}
1.40 Y 1.40
' 1.20
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* 1.00
1.00 LY
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= = =Fjt ——CVLR —*——12 Years™ = =Fit

= Consider volatility of A(x,t), A(2x,1/2), A(4x,t/4) etc.
= Same relationship between volatility and volume, xt

= Data consistent with volumetric/temporal symmetry and with model A(x,t) = X( xCt)
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6. Four Levy Process Models

A(x,t) = X(xt) no

A(xt) = X(xZ(t)) no

A(x,t) = X( xCt )

Yes

A(x,t) = X(xCZ(t)) no

Volumetrically diversifying

Volumetric/temporal asymmetry

Not volumetrically diversifying, volumetric/temporal symmetry

Volumetric/temporal asymmetry

A(x,t) = xR(t) no Constant volatility with volume
Diversifying
Model Variance v(x,t) r—00 |t— 00

X (xt) ot \/% Yes Yes
7 2

X(xZ(1)) wt(o? + 27?) o+ No Yes
P

X(zCt) wt(o? + cat) e No No

6.9 [(c+1)7? )
i +c 2 2
X(zCZ(1)) ( t ST+ +te No No
+o’at
v X (1) 22o’t o/t Const. Yes

Variance and coefficient of variation
v of each model

24

AMBENFIELD



7. Why bother with Levy Processes?

= Paper uses compound Poisson distributions as examples for simplicity

= Why bother with general Levy processes?
— Academically interesting / publishing cottage industry!

» “Infinite activity” Levy processes include processes with X(1) distributed as

Lognormal

Pareto

Gamma

Laplace

Weibull (a<1; a>1 is not infinitely divisible)
Allows for negative jumps but positive creep

» Use of infinitesimal generator as a risk measure through norm of operator appears interesting

25

AWBENFIELD



8. So What? Can we see the Impact in Prices?

» |diosyncratic risk matters, price should decrease with size
— Price = margin or spread over actuarial rate
— Size = expected loss = xt; t=1
— “Large” depends on particulars of severity distribution

= Umbrella and high limit policies
— Companies target higher price and lower combined ratio for higher process risk

= Reinsurer notion of “balance”
— Unbalanced cover has premium < limit

= Property per risk reinsurance
— Large limits; unbalanced
— Historically very expensive

= Large accounts, package policies
— Probably top-line focus rather than risk theory

= Myers-Cohn

— Impact of inhomogeneity apparent around volume typical of company business unit or allocation
unit
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9. Observed Correlations and Copulas

US Statutory Loss Ratio Correlations
$100M Premium Threshold in Both Lines

First Year 1992 Evaluation latest Premium Threshold ($M) 100.0
Last Year 2007 Gross or Net G Averages straight
Correlation Coefficients

Raw Line B
Line A All Home PPAuto CMP CommAuto WorkComp  OtherLiabOcc MedMalCM  OtherLiabCM ProdLiab-Occ
All 1.000 0.635 0.553 0.774 0.670 0.758 0.736 0.704 0.570 0.618
Home 0.635 1.000 0.069 0.198 -0.086
PPAuto 0.553 0.069 1.000 0.250 0.281 0.305 0.295 0.314 0.366 0.270
CMP 0.774 0.198 0.250 1.000 0.528 0.432 0.503 0.595 0.423 0.427
CommAuto 0.670 0.281 0.528 1.000 0.627 0.685 0.725 0.451 0.752
WorkComp 0.758 -0.086 0.305 0.432 0.627 1.000 0.638 0.759 0.572 0.605
OtherLiabOcc 0.736 0.295 0.503 0.685 0.638 1.000 0.802 0.606 0.641
MedMalCM 0.704 0.314 0.595 0.725 0.759 0.802 1.000 0.731 0.797
OtherLiabCM 0.570 0.366 0.423 0.451 0.572 0.606 0.731 1.000 0.229
ProdLiab-Occ 0.618 0.270 0.427 0.752 0.605 0.641 0.797 0.229 1.000
No Market Risk Line B
Line A All Home PPAuto CMP CommAuto WorkComp  OtherLiabOcc MedMalCM  OtherLiabCM ProdLiab-Occ
All 1.000 0.645 0.462 0.649 0.420 0.547 0.545 0.567 0.288 0.368
Home 0.645 1.000 0.071 0.083 -0.098
PPAuto 0.462 0.071 1.000 0.082 0.143 0.107 0.372
CMP 0.649 0.083 0.082 1.000 0.321 0.281 0.285 0.158 0.222
CommAuto 0.420 0.321 1.000 0.394 0.440 0.273 0.128 0.371
WorkComp 0.547 -0.098 0.143 0.281 0.394 1.000 0.226 0.316 0.386
OtherLiabOcc 0.545 0.107 0.285 0.440 0.226 1.000 0.377 0.251 0.371
MedMalCM 0.567 0.273 0.316 0.377 1.000 0.426
OtherLiabCM 0.288 0.158 0.128 0.251 0.426 1.000
ProdLiab-Occ 0.368 0.372 0.222 0.371 0.386 0.371 1.000
Numbers in gray not statistically significantly different from zero at 90% level
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9. Observed Correlations and Copulas

First Year 1992 Evaluation latest Premium Threshold ($M) 100.0
Last Year 2007 Gross or Net G Averages straight

90.0% Confidence Interval for Correlation Coefficients

Raw Line B
Line A All Home PPAuto CMP CommAuto WorkComp  OtherLiabOcc  MedMalCM  OtherLiabCM ProdLiab-Occ
All 1 (0.60, 0.67) (0.52, 0.58) (0.75, 0.80) (0.63, 0.70) (0.73, 0.78) (0.71, 0.76) (0.65, 0.75) (0.50, 0.63) (0.51,0.71)
Home (0.60, 0.67) 1 (0.01, 0.13) (0.12,0.27)
PPAuto (0.52, 0.58) (0.01, 0.13) 1 (0.18, 0.32) (0.21, 0.35) (0.23, 0.37) (0.22, 0.37) (0.11, 0.50) (0.25,0.47) (0.09, 0.44)
CMP (0.75, 0.80) (0.12,0.27) (0.18, 0.32) 1 (0.47, 0.58) (0.37, 0.49) (0.44, 0.56) (0.46, 0.71) (0.33, 0.51) (0.28, 0.56)
CommAuto (0.63, 0.70) (0.21, 0.35) (0.47, 0.58) 1 (0.58, 0.67) (0.64, 0.72) (0.62,0.81) (0.36, 0.54) (0.67,0.82)
WorkComp (0.73,0.78) (0.23, 0.37) (0.37, 0.49) (0.58, 0.67) 1 (0.59, 0.68) (0.67, 0.83) (0.49, 0.64) (0.49, 0.70)
OtherLiabOcc (0.71, 0.76) (0.22,0.37) (0.44, 0.56) (0.64, 0.72) (0.59, 0.68) 1 (0.73, 0.86) (0.54, 0.67) (0.53, 0.73)
MedMalCM (0.65, 0.75) (0.11, 0.50) (0.46, 0.71) (0.62, 0.81) (0.67, 0.83) (0.73, 0.86) 1 (0.64, 0.81) (0.68, 0.88)
OtherLiabCM (0.50, 0.63) (0.25,0.47) (0.33,0.51) (0.36, 0.54) (0.49, 0.64) (0.54, 0.67) (0.64, 0.81) 1 (0.05, 0.39)
ProdLiab-Occ (0.51, 0.71) (0.09, 0.44) (0.28, 0.56) (0.67, 0.82) (0.49, 0.70) (0.53, 0.73) (0.68, 0.88) (0.05, 0.39) 1
No Market Risk Line B
Line A All Home PPAuto CMP CommAuto WorkComp  OtherLiabOcc  MedMalCM  OtherLiabCM ProdLiab-Occ
All 1 (0.61, 0.68) (0.42, 0.50) (0.61, 0.68) (0.37,0.47) (0.51, 0.58) (0.50, 0.59) (0.49, 0.63) (0.20, 0.37) (0.22, 0.50)
Home (0.61, 0.68) 1 (0.01, 0.13) (-0.18, -0.01)
PPAuto (0.42, 0.50) (0.01, 0.13) 1 (0.01, 0.16) (0.07, 0.22) (0.02, 0.19) (0.20, 0.53)
CMP (0.61, 0.68) (0.01, 0.16) 1 (0.25, 0.39) (0.21, 0.35) (0.21, 0.36) (0.05, 0.26) (0.06, 0.38)
CommAuto (0.37,0.47) (0.25, 0.39) 1 (0.33, 0.45) (0.38, 0.50) (0.09, 0.44) (0.01, 0.24) (0.22, 0.51)
WorkComp (0.51,0.58) (-0.18,-0.01) (0.07, 0.22) (0.21, 0.35) (0.33, 0.45) 1 (0.15, 0.30) (0.14, 0.48) (0.24, 0.52)
OtherLiabOcc (0.50, 0.59) (0.02, 0.19) (0.21, 0.36) (0.38, 0.50) (0.15, 0.30) 1 (0.22, 0.52) (0.15, 0.35) (0.22, 0.51)
MedMalCM (0.49, 0.63) (0.09, 0.44) (0.14, 0.48) (0.22, 0.52) 1 (0.27, 0.56)
OtherLiabCM (0.20, 0.37) (0.05, 0.26) (0.01, 0.24) (0.15, 0.35) (0.27, 0.56) 1
ProdLiab-Occ (0.22, 0.50) (0.20, 0.53) (0.06, 0.38) (0.22, 0.51) (0.24, 0.52) (0.22, 0.51) 1
Number of Observations
Line A All Home PPAuto CMP CommAuto WorkComp  OtherLiabOcc  MedMalCM  OtherLiabCM ProdLiab-Occ
All 4400 852 1260 702 671 1022 653 248 296 99
Home 852 852 722 423 388 378 308 52 144 73
PPAuto 1260 722 1260 453 483 455 376 61 167 77
CMP 702 423 453 702 488 516 435 79 222 97
CommAuto 671 388 483 488 671 543 464 77 204 98
WorkComp 1022 378 455 516 543 1022 477 80 221 99
OtherLiabOcc 653 308 376 435 464 477 653 88 249 98
MedMalCM 248 52 61 79 77 80 88 248 87 41
OtherLiabCM 296 144 167 222 204 221 249 87 296 87
ProdLiab-Occ 99 73 77 97 98 99 98 99

41 87
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9. Observed Correlations and Copulas

Commercial Multi-Peril (x-axis) vs. Commercial Auto Liability, $100M premium threshold 552 Annual Observations
2.50 - Raw Data 354 Normal Transformed Data
2.00 - *

1.50 A

1.00 A % x

[
0.50
0

0 0.50 1.00 1.50 2.00 2.50
Association Summary Univariate Summary
Linear Correlation, rho 52.1% Commercial Multi-Peril Commercial Auto Liabilit
90% Confidence Interval (46.8%, 57.1%) Mean 0.7448 0.7865
Base Linear Correlation 71.1% Min 0.1961 0.3119
Extreme Linear Correlation (n=57) 30.9% Max 2.3773 2.0247
Rank Correlation 67.6% Std. Dev. 0.2409 0.2050
Rank Correlation from rho 50.3% cv 32.3% 26.1%
Normal-Transformed Correlation 65.1% Skewness 1.99 1.36
Kendall Tau 50.0% Kurtosis 9.88 3.91
Rho fromtau 70.7% 90th percentile 98.7% 105.1%
Outliers at 10% and 1% levels 10.3% and 1.8% 99th percentile 142.8% 151.9%

Note: 1% outliers from normal copula marked in red. 10% and 1% and confidence intervals show on right.
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10. How the Results are Used
Aon Benfield Insurance Risk Study Informed Parameterization of Risk Models

Objective

Insurance Risk Study determines credible
global insurance volatility benchmarks for
use in underwriting risk modeling

Motivation: robust empirical quantification of all
aspects of underwriting risk

Systemic volatility parameters by country,
by line
— Forty eight countries, 90% of global premium _ N _

Coefficient of Variation of Gross Loss Ratio by Country
— Results for eight core lines of business Motor Map 5: Insurance Penetration
— Available as input to any simulation tool =

Loss ratio correlation between lines within country
and between countries

Assessment of US reserve risk

Correlation between macroeconomic and
insurance variables

Economic and insured loss potential from major
catastrophe risks globally

Recognized by major US rating agencies ik Mo
Published annually in August
Seventh edition released in 2012

eeeee
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Contact Information

Stephen J. Mildenhall, PhD, FCAS, ASA, CERA
Aon Benfield Analytics
Chicago, IL

+1.312.381.5880 (office) / +1.312.961.8781 (cell)
stephen.mildenhall@aonbenfield.com
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